
ZipCache: A DRAM/SSD Cache with Built-in Transparent
Compression

Rui Xie
Rensselaer Polytechnic Institute

Troy, NY, USA
xier2@rpi.edu

Linsen Ma
Rensselaer Polytechnic Institute

Troy, NY, USA
mal3@rpi.edu

Alex Zhong
Harker School

San Jose, CA, USA
25alexz@students.harker.org

Feng Chen
Louisiana State University
Baton Rouge, LA, USA
fchen@csc.lsu.edu

Tong Zhang
Rensselaer Polytechnic Institute

Troy, NY, USA
tzhang@ecse.rpi.edu

Abstract
As a core component in modern data centers, key-value cache
provides high-throughput and low-latency services for high-speed
data processing. The effectiveness of a key-value cache relies on
its ability of accommodating the needed data. However, expanding
the cache capacity is often more difficult than commonly expected
because of many practical constraints, such as server costs, cooling
issues, rack space, and even human resource expenses. A potential
solution is compression, which virtually extends the cache capacity
by condensing data in cache. In practice, this seemingly simple idea
has not gained much traction in key-value cache system design,
due to several critical issues: the compression-unfriendly index
structure, severe read/write amplification, wasteful decompression
operations, and heavy computing cost. This paper presents a hybrid
DRAM-SSD cache design to realize a systematic integration of data
compression in key-value cache. By treating compression as an
essential component, we have redesigned the indexing structure,
data management, and leveraged the emerging computational SSD
hardware for collaborative optimizations. We have developed a
prototype, called ZipCache. Our experimental results show that
ZipCache can achieve up to 72.4% higher throughput and 42.4%
lower latency, while reducing the write amplification by up to 26.2
times.

CCS Concepts
• Information systems→ Database design and models.

Keywords
Key-Value Cache, Data Compression, DRAM/SSD Cache, Computa-
tional SSD

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MEMSYS ’24, September 30-October 3, 2024, Washington, VA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1091-9/24/09
https://doi.org/10.1145/3695794.3695805

ACM Reference Format:
Rui Xie, Linsen Ma, Alex Zhong, Feng Chen, and Tong Zhang. 2024. Zip-
Cache: A DRAM/SSD Cache with Built-in Transparent Compression. In The
International Symposium on Memory Systems (MEMSYS ’24), September 30-
October 3, 2024, Washington, VA, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3695794.3695805

1 Introduction
Key-value cache plays a crucial role in providing high-throughput,
low-latency data services. Major Internet service providers, such as
Google and Meta, often deploy a fleet of cache servers as the first
line of defense to handle a massive influx of requests for key-value
data, a type of unstructured data organized in simple forms as keys
and values (e.g., “User ID” and “User name”). Key-value caching
can accelerate data retrievals and alleviate the traffic to backend
databases by serving from high-speed storage medium, typically
DRAM, flash memory, or a combination of both, such as Meta’s
CacheLib [8] and Ximalaya’s xcache [3].

The effectiveness of key-value caching hinges on its ability of
accommodating the requested data in cache. While a larger cache
intuitively leads to improved performance, expanding the capacity
of key-value caches within data centers is often not simply a matter
of hardware upgrade. Many practical constraints, such as server
costs, cooling expenses, rack space, real estate limitations, and even
human resource expenses must be taken into consideration. Let us
consider the hardware cost as an example: Microsoft Azure reports
that DRAM constitutes 50% of their server costs [48], and Meta
reports a similar trend (40% of the rack cost) [46]; Although the
prices of high-speed NVMe SSDs are comparatively lower, they are
still rather substantial [15, 49, 58]. Relying solely on hardware in-
vestment to increase cache capacity is apparently not a sustainable,
cost-effective approach to keep up with the rapid growth of data.
This poses an increasingly severe challenge in today’s data centers.

A potential solution is compression. By condensing data to occupy
a smaller footprint, one could virtually expand the cache capacity,
allowing cache to hold more data, which in turn increases the cache
hit ratio. Despite the adoption of data compression in computing
systems in prior studies [25, 31, 52, 62], interestingly, this simple
idea has not gained much traction in key-value cache design. We
believe that this lack of adoption in practice is due to several unique
and critical issues inherent in key-value cache systems:

https://doi.org/10.1145/3695794.3695805
https://doi.org/10.1145/3695794.3695805

MEMSYS ’24, September 30-October 3, 2024, Washington, VA, USA Rui Xie, Linsen Ma, Alex Zhong, Feng Chen, and Tong Zhang

• Issue #1: The commonly used hash indexing causes random,
compression-unfriendly data placement. Most key-value cache
systems adopt a hash index based structure to manage the key-value
data [6, 21, 44]. With hash indexing, keys are randomly dispersed
in a flat, shallow data structure, which is advantageous for quick
search in a large key space but comes with a detrimental effect
for compression: Due to the nature of hash functions, the keys
are evenly distributed, leaving unrelated data randomly mingled
together. Such data layout is inherently difficult for effective data
compression, as compression algorithms heavily rely on organizing
similar data content within a close proximity.
• Issue #2: The structure designed for managing small-size
key-value items introduces a severe read/write amplification
problem. Key-value workloads are known to be dominated by
small-size data items. According to a study fromMeta/Facebook, the
majority of key-value items are (much) smaller than 500 bytes [16].
Since compressing each individual small key-value item yields lim-
ited or no benefits in size reduction, achieving effective compres-
sion requires to pack a collection of small key-value items for a
reasonable compression ratio. However, this “optimization” would
result in a substantial, undesirable increase in access operations,
i.e., read/write amplification, when reading or updating a small
key-value item in a much larger compression unit.
• Issue #3: Compression and decompression are simply treated
as two opposite processes on the same unit of data. As a com-
mon practice, a block of data is compressed and decompressed as a
full, single unit. As we increase the compression granularity to re-
duce indexing costs and increase compression ratios, the efficiency
of decompression process unfortunately diminishes. This is because
the more data is compressed, the more needs to be decompressed,
leading to a proportionally increased amount of data accesses and
longer delays to decompress and locate the requested key-value
item.
• Issue #4: Compression imposes a heavy computing cost and
interferes other data-processing tasks. It is well-known that
compression is computation intensive, essentially trading computa-
tion for storage capacity. Conducting data compression and decom-
pression operations on general-purpose CPUs not only increases
the burden on limited CPU resources but also causes disruptive
effect on foreground service operations, potentially reducing the
overall system throughput and increasing user-perceived delays.
Considering the stringent requirement for cache latency, the addi-
tional delay is a non-trivial overhead that must be considered and
mitigated.

All the above-said issues pose a critical challenge to the current
key-value cache systems, calling for a full consideration of data
compression as an essential component in the cache system design.
In this paper, we propose a new scheme, called ZipCache, to realize
a systematic integration of data compression in the key-value cache
system design. By treating data compression as an integral compo-
nent, we have redesigned the indexing structure, data management,
and leverage cutting-edge hardware for collaborative optimizations.
Specifically, we take several important measures to achieve system-
atic optimizations for data compression:

Firstly, we abandon the conventional hash indexing structure
and adopt a seemingly more “costly” B+ tree based structure to

manage key-value items. This enables us to preserve content simi-
larity and retain the spatial locality. Secondly, we introduce a sparse
structure, called super-leaf, to store key-value data for compression
in a virtualized SSD storage space. This leverages the emerging
commercial SSDs with built-in transparent compression to main-
tain low-cost indexing without wasting any physical storage space.
Thirdly, we decouple the data units for compression and decom-
pression by creating a special intra-page structure for just-in-need
decompression. This method facilitates early termination, signifi-
cantly reducing decompression time and read amplification. Lastly,
we fully exploit the abilities of the emerging computational SSDs
with built-in transparent compression to offload heavy-cost data
compression operations from the CPU to the storage device, which
alleviates the computing burden and removes potential interfer-
ence. To the best of our knowledge, this is the first work introducing
hardware-assisted data compression into a hybrid DRAM/SSD key-
value cache system.

We have implemented a prototype of ZipCache, which is a hy-
brid key-value cache with two cache layers, a DRAM layer and a
flash memory layer. We use ScaleFlux’s CSD3000 SSD [11] with
hardware acceleration for transparent on-device compression. Our
experiments show promising results. In comparison to the state-of-
the-art solutions, including CacheLib [19] and xcache [3] and Kan-
garoo [47], our evaluation results demonstrate that, with a design
carefully optimized for data compression, ZipCache can achieve
up to 72.4% higher throughput and 42.4% lower 90-percentile read
latency, and reduces the SSD write amplification by up to 26.2×. It
is our hope that this work will motivate more future research to
explore the full potential of the long-overlooked block compression
for performance-critical caching systems.

The rest of this paper is organized as follows. Section 2 introduces
background. Section 3 and 4 present our design and the experimen-
tal results. Section 5 discusses the related work. The last section
concludes this paper.

2 Background and Motivation
2.1 Data Compression
General-purpose block compression is realized by deduplicating re-
peated byte strings in a data block, referred to as LZ search [64, 65].
Although CPU-based LZ search suffers from low speed due to the
high CPU cache miss rate, its reverse process (i.e., LZ decompres-
sion) can be much faster. The compression block size affects the
trade-off between compression ratio1 and (de)compression speed.
Using the file samba in Silesia corpus [2] as test data, Fig. 1 shows the
LZ4 compression ratio and (de)compression latency under different
block sizes. It shows about 4× speed performance difference be-
tween compression and decompression. As the compression block
size continues to increase, the compression ratio first significantly
improves and then gradually saturates.

The decompression process scans through the LZ-compressed
byte stream to sequentially reconstruct the original data block. In
theory, this process could terminate at any byte location, leading
to a partially reconstructed data block. This makes it possible to

1In this work, we define compression ratio as
𝑆𝑜𝑟𝑖𝑔

𝑆𝑐𝑜𝑚𝑝
≥ 1, where 𝑆𝑜𝑟𝑖𝑔 and 𝑆𝑐𝑜𝑚𝑝

denote the size of the original and compressed data blocks.

ZipCache: A DRAM/SSD Cache with Built-in Transparent Compression MEMSYS ’24, September 30-October 3, 2024, Washington, VA, USA

0

1

2

3

0
5

10
15
20

0 4096 8192

C
om

p.
 ra

tio

La
te

nc
y

(μ
s)

Block size (bytes)

Comp. latency Decomp. latency Comp. ratio

Figure 1: Comparison of compression ratio, (de)compression
latency under different compression block size.

realize early termination of decompression: Suppose LZ search com-
presses an 𝑛-segment data block D = [𝑏1, 𝑏2, · · · , 𝑏𝑛] into C. When
decompressing C, the original data [𝑏1, · · · , 𝑏𝑘] are successively
reconstructed as 𝑘 grows from 1 to 𝑛. Let 𝜏 denote the latency of
decompressing C to reconstruct the entire D. If the decompression
process terminates once after the first 𝑚 segments [𝑏1, · · · , 𝑏𝑚],
where𝑚 ≤ 𝑛) have been reconstructed, we define its early termina-
tion factor 𝛾 (𝑚,𝑛) =𝑚/𝑛, and the decompression latency is about
𝛾 (𝑚,𝑛) · 𝜏 . Suppose we are only interested in obtaining one cache
object in the𝑚-th segment, we could reduce the latency by 1−𝑚/𝑛
via decompression early termination. Using file samba in Silesia
corpus [2] as test data, we partitioned each 4KB data block into
256B (𝑛 = 16) segments and measured the average LZ4 decom-
pression latency under different early termination factor 𝛾 (𝑚,𝑛) as
shown in Table 1, which reveals substantial performance benefits.

Table 1: Decompression latency under different 𝛾 (𝑚,𝑛).

𝛾 (𝑚,𝑛) 1/16 2/16 4/16 8/16 16/16
Latency (𝜇s) 0.10 0.22 0.31 0.54 1.48

2.2 Cache Index Data Structure
Most in-memory data stores (e.g., Redis [6], FASTER [21],MICA [44])
use hash index to reduce the latency and simplify the implementa-
tion. In contrast, most storage-based data stores (e.g., RocksDB [7,
29], WiredTiger [12], Bw-tree [41]) employ tree index to reduce the
index memory usage and embrace the storage block I/O interface.
As for hybrid-DRAM/SSD caches, Meta’s CacheLib [8, 19] uses
hash index for the DRAM and SSD tiers, while Redis-compatible
xcache [3] (developed based on Redis [6]) and Pika/RocksDB [9]
employs hash index for DRAM tier and log-structured merge (LSM)
tree [51] index for SSD tier.

The index structure has a substantial effect on the efficacy of
data compression. Since compression ratio is proportional to the
byte content similarity, a tree index that sorts all the cache objects
based on their keys is clearly more beneficial, in comparison to
hash index that randomly hashes cache objects into data blocks.
For the purpose of demonstration, Fig. 2(a) shows the 4KB block
compression ratio under hash index and B+ tree index. The key is
8B unix timestamp and object size ranging from 4B to 64B, which
are both extracted from the Bitstamp Exchange Data [4]. By keeping
objects with adjacent keys together, B+ tree achieves over 2× higher
compression ratio than hash index. Although B+ tree index has a
longer traversing latency than hash index, decompression tends to

dominate the overall data access latency, which largely reduces the
overall latency gap between B+ tree and hash index as shown in
Fig. 2(b). A strong implication is that, although prior work on in-
memory cache design widely adopted hash index, integrating block
compression into in-memory cache makes tree index a favorable
choice.

0
1
2
3
4

0 10 20 30 40 50 60 70C
om

pr
es

si
on

 ra
tio

Object size (Bytes)

B+Tree Compression Ratio Hash Compression Ratio

0 0.5 1 1.5 2 2.5

1

10

100

1000

Latency (μs)C
ou

nt
 o

f o
bj

ec
ts

 (M
illi

on
)

B+ tree index Hash index B+ tree decomp. Hash decomp.

(a) Compression ratio comparison

(b) Latency comparison

Figure 2: (a) Compression ratio of 4KB blocks under hash
index and B+ tree index, and (b) latency of index traversing
and block decompression under different total number of
cache objects (hence different B+ tree depth), where key and
values are obtained from Bitstamp Exchange Data [4].

Meta’s CacheLib uses hash index for SSD-resident objects by di-
rectly hashing each object to a 4KB SSD LBA (logical block address)
block without an in-memory hash table. This makes CacheLib sub-
ject to a high SSD write amplification: each object insert/update
invokes re-writing a 4KB LBA block. As a variant of CacheLib, Kan-
garoo [47] applies write-ahead log (WAL) to amortize the SSD write
cost by buffering multiple cache objects hashed to the same LBA.
Although it can reduce the SSD write amplification, the storage and
management of WAL introduce non-negligible overhead in terms
of SSD capacity and CPU/memory usage.

2.3 In-Storage Transparent Compression
Data compression in a hybrid cache system imposes additional
computation at both DRAM and flash cache tiers. Due to the lack of
hardware support, compression over DRAM cache tier must be han-
dled by host CPU, while the SSD-tier compression can be offloaded
to the emerging computational SSDs with built-in transparent com-
pression. Fig. 3(a) illustrates the structure of such SSDs [11], where
the controller SoC (system on chip) (de)compresses each 4KB LBA
block along the I/O path and manages the placement of compressed
blocks on NAND flashmemory. Host CPU accesses the SSD through
standard I/O interface (e.g., NVMe). The dedicated hardware en-
gines on the controller SoC implement per-4KB (de)compression at
the latency of a few microseconds, which is over 10× shorter than
the TLC/QLC NAND flash memory read (about 50𝜇s and above)
and write latency (about 1ms and above). Therefore, SSDs with
built-in transparent compression can maintain the same IOPS (IO

MEMSYS ’24, September 30-October 3, 2024, Washington, VA, USA Rui Xie, Linsen Ma, Alex Zhong, Feng Chen, and Tong Zhang

per second) and latency performance as ordinary SSDs. Such SSDs
expose an expanded logical storage space that is larger (e.g., by 2×
or 4×) than the physical NAND flash storage capacity, as illustrated
in Fig. 3(b). This unique feature enables unique opportunities for
our optimization efforts.

Per-4KB
compression NAND

FlashPer-4KB
decompression

NVMe
Flash

Control

Controller SoC

Host

SSD

NAND Flash (e.g., 4TB)

Exposed LBA space (e.g., 16TB)

SSD

In-Storage Transparent Compression

(a)

(b)

Figure 3: An illustration of (a) an SSD with built-in transpar-
ent compression, and (b) the expanded LBA space.

3 Design
We have designed a hybrid key-value cache solution, called Zip-
Cache, with highly efficient built-in block compression. In this sec-
tion, we will first introduce its basic architecture, then present a set
of design techniques for improving its implementation efficiency,
and finally describe its major operations.

3.1 Architecture Overview
ZipCache is a hybrid cache with two cache tiers. As illustrated in
Fig. 4, ZipCache employs B+ tree index data structure to manage
both its DRAM and SSD cache tiers, performing block compression
on the B+ tree leaf pages. As mentioned in Section 2.2, a key benefit
with B+ tree indexing is that all cache objects are sorted with their
keys, enabling significantly higher compression ratios than its hash-
based counterpart.

ZipCache is optimized for handling massive amount of small key-
value items, which is not only practically important [19] but also
poses significant challenges. ZipCache categorizes cache objects
into three different size classes tiny, medium, and large by using
pre-defined thresholds (e.g., 128B and 2KB). The three types of key-
value items are handled differently: Tiny- and medium-size objects
are stored across the DRAM and SSD tiers, while large-size objects
are always SSD-resident, which is for maximizing the DRAM cache
tier hit ratio. We compress in-memory tiny-size objects together in
the unit of tree pages, and compress each in-memory medium-size
object individually. In order to manage the different key-value items
in DRAM and SSD cache tiers, ZipCache maintains three B+ trees:

(1) 𝐵𝑇𝐷𝑅𝐴𝑀 for DRAM cache: This index structure entirely re-
sides in host DRAM. Its compressed leaf pages hold tiny-size
objects and pointers that point to in-memory compressed
medium-size objects.

(2) 𝐵𝑇𝑆𝑆𝐷 for SSD cache: Its leaf pages hold tiny/medium-size
objects and are resident in SSD, and all its non-leaf pages
reside in host DRAM.

(3) 𝐵𝑇𝐿𝑂 for indexing large-size objects: It entirely resides in
host DRAM, and its leaf pages hold pointers that point to
SSD-resident large-size objects.

ZipCache deploys its SSD cache tier over SSDs with built-in
transparent compression, meaning that the compression of all the
SSD-resident objects is transparently handled by SSDs. To minimize
the SSD write amplification and leverage the huge DRAM-SSD bit
cost gap (more than 20×), ZipCache adopts the inclusive caching
policy over its two tiers, meaning that a key-value item could be
held in both tiers. Due to the distinct characteristics of DRAM and
SSD, the two cache tiers face different issues and challenges. Hence
we will present the design of DRAM and SSD cache tiers separately
in the following subsections.

3.2 DRAM Cache Tier
DRAM cache tier relies on host CPUs to (de)compress each B+ tree
leaf page, and a leaf page should be large enough (e.g., 4KB) to en-
sure high compression ratio. As shown in the previous section, since
(de)compressing a 4KB data block incurs a much higher overhead
than traversing in-memory B+ tree (only a few hundred nanosec-
onds), we introduce the following three techniques to mitigate the
(de)compression-induced overheads:

Decompression early termination. Motivated by the obser-
vation that the decompression time is almost proportional to the
amount of decompressed data, we introduce a hash-assisted method
to realize early termination of the decompression process. Let
P = [p1, p2, · · · , p𝑛] denote one original (uncompressed) B+ tree
leaf page, and C denote the compressed version of P. To obtain
a cache object within the leaf page P, if we a priori know that
the cache object locates in the sub-page p𝑚 , we can reduce the
cache read latency by roughly 1 −𝑚/𝑛 via decompression early
termination.

To realize decompression early termination, we must be able
to know which sub-page p𝑖 contains the requested cache object
before performing decompression, which however is impossible
if we construct B+ tree leaf pages with conventional practice [34].
To address this issue, we construct each B+ tree leaf page in a
hash-based manner as illustrated in Fig. 5: Let K denote the cache
object key space and define a hash function 𝑓 : K → [1, 𝑛]. For
cache objects that fall into one B+ tree leaf page, we use the hash
function 𝑓 to calculate their destined sub-pages inside the page.
Therefore, to fetch a cache object from a B+ tree leaf page, we can
determine its associated sub-page through a simple hashing and
hence accordingly configure the decompression early termination.

A side effect is that due to the nature of hashing and varying
cache object size, a sub-page may only be partially filled with cache
objects. However, padding the unused space with all zeros, our page
compression process can almost entirely eliminate this potential
memory space waste (see Fig. 5). If a sub-page is completely filled
up, the B+ tree leaf page is split into two new B+ tree leaf pages,
each storing roughly half of the cache objects in the original leaf
page.

ZipCache: A DRAM/SSD Cache with Built-in Transparent Compression MEMSYS ’24, September 30-October 3, 2024, Washington, VA, USA

DRAM

Super-leaf page 1 Super-leaf page M. . .

SSD

NAND Flash

.

Large-size objects
𝐿! . . .

Per-4KB Compression
. . .

Sub-Page
𝐿"

4KB Page

LBA

. . .

. . .

𝐵𝑇#$
. . .

. . .

𝐵𝑇%%&
𝑀!

Medium-size objects
. . . 𝑀"

𝐵𝑇&'()
. . .

. . .

Figure 4: Overview of ZipCache architecture that employ three B+ trees to manage the DRAM cache tier, SSD cache tier, and
large-size cache objects respectively.

. . .0’s

Page Compression (e.g., LZ4)

[Object!, Object", …, Object#]

Hash function f

sub-page P1

0’s

sub-page P2

0’s

sub-page Pn

Leaf Page
(pre-comp.)

Leaf Page (post-comp.)

. . .

Figure 5: Illustration of hash-based mapping between cache
objects and sub-pages in a leaf page of 𝐵𝑇𝐷𝑅𝐴𝑀 , including the
leaf page decompression early termination.

Adaptive compression bypassing. Intuitively, repeatedly com-
pressing and decompressing hot B+ tree leaf pages would impose
undesirable overhead, especially for workloads with highly skewed
access pattern. We create two sub-tiers in the DRAM cache layer
to adapt to runtime workloads: (1) An uncompressed sub-tier con-
tains a small number of hot B+ tree leaf pages in their original,
uncompressed form, and (2) a compressed sub-tier contains the rest
leaf pages in the compressed form. To avoid sacrificing the DRAM
cache tier hit ratio, we adaptively adjust the uncompressed hot-page
sub-tier capacity according to the degree of workload locality. The
uncompressed sub-tier could be completely eliminated in absence
of sufficient locality.

The uncompressed sub-tier contains hot data. ZipCache adap-
tively auto-tunes its capacity as follows. Each B+ tree leaf page
is associated with a per-page counter for tracking the runtime ac-
cess intensity. The counters are periodically right-shifted by one
bit to avoid overflow and age out obsolete accesses. Let 𝜇𝐷 and
𝜎𝐷 denote the mean and deviation of the page access intensity,
the uncompressed sub-tier only contains leaf pages whose access
intensity exceeds the threshold of 𝜇𝐷 + 𝑟 · 𝜎𝐷 , where 𝑟 > 1 is a
design parameter. By setting 𝑟 sufficiently large (e.g., 3), we can

ensure only a small number of leaf pages could possibly reside
in the uncompressed sub-tier. To further improve the adaption to
runtime workloads, we may dynamically fine-tune the parameter
𝑟 . In particular, we can vary the value of 𝑟 and then monitor its
effect on the overall cache performance. Optimization algorithm
(e.g., simulated annealing) can be used to search the value of 𝑟 that
better matches the runtime workload characteristics.

Per-page write buffering. Inserting or updating a cache object
in a compressed B+ tree leaf page needs to first decompress the
entire page, insert/update the cache object in the page, and then re-
compress the entire page. Such read/write amplification leads to a
high operational overhead. We mitigate this issue by maintaining a
write buffer to temporarily hold multiple insert/update to the same
B+ tree leaf page and merge them together into the page through
a single round of page decompression-modification-compression.
This essentially trades extra memory usage for lower compression-
induced implementation overhead. Once the buffer size exceeds a
pre-defined threshold (e.g., 128B or 256B), the corresponding B+ tree
leaf page is marked as a candidate for background compaction. To
further reduce the interference with foreground operations, the
page compaction operations are handled by background threads.
We note that the aggregated runtime write buffer memory usage
largely depends on the spatial locality of write requests. Under a
workload with high spatial locality, only a small percentage of leaf
pages undergo intensive updates, and write buffering can effectively
remove overhead caused by unnecessary re-compression.

3.3 SSD Cache Tier
The emerging computational SSD provides built-in transparent
compression [11], which brings multiple technical advantages. It
not only offloads the resource-demanding (de)compression opera-
tions from the host CPUs, but also relieves the cache system from
the complexities of handling the storage of variable-length post-
compression data blocks.

Leveraging SSDs with built-in transparent compression, Zip-
Cache SSD cache tier simply writes the B+ tree leaf pages in their
original, uncompressed form into the underlying SSDs. Although
being greatly assisted by such a new breed of SSDs, ZipCache SSD
cache tier still needs to tackle two nontrivial issues: (1) How to
reduce its host DRAM consumption without affecting the cache hit

MEMSYS ’24, September 30-October 3, 2024, Washington, VA, USA Rui Xie, Linsen Ma, Alex Zhong, Feng Chen, and Tong Zhang

cost? (2) How to reduce the SSD write amplification in the pres-
ence of significant size mismatch between B+ tree pages and cache
objects? In the following, we present three design techniques to
address these two challenging issues.

Intra-page object hashing. In order to accelerate the SSD cache
hits, we keep all the non-leaf pages of the SSD-tier B+ tree in host
DRAM. It allows us to access SSD only once when serving an
SSD cache read request. However, this approach incurs non-trivial
spatial overhead for storing these non-leaf pages in DRAM, which
reduces the DRAM capacity available for DRAM cache tier. To
mitigate this issue, the only option is to increase the size of SSD
cache B+ tree leaf pages. Conventional implementation of a B+ tree
always reads and writes one page as a whole on storage devices.
As a result, a larger leaf page size would proportionally increase
the SSD read/write amplification, leading to a higher SSD cache hit
cost and shorter SSD lifetime.

We address the above-said challenge by decoupling the B+ tree
leaf page size from SSD read/write unit. As illustrated in Fig. 6,
we construct each SSD cache B+ tree leaf page in a hash-based
manner. Since the LBA I/O size is by default 4KB, we set SSD
cache’s B+ tree leaf page size as a multiple of 4KB (i.e., 4𝑚 KB,
where𝑚 is a positive integer). Each leaf page Q is partitioned into
𝑚 4KB sub-pages [q1, q2, · · · , q𝑚]. Let K denote the cache object
key space and define a hash function 𝑔 : K → [1, 𝑚]. For cache
objects that fall into one B+ super-leaf page, we could use the hash
function 𝑔 to calculate their destined 4KB sub-pages. As a result,
regardless of the B+ tree page size (e.g., 16KB or 64KB), we only
need to fetch/write one 4KB from/to SSD to serve a read/write
request. Such leaf pages are referred to as super-leaf pages.

Although such hash-based page construction likely leaves empty
space in 4KB sub-page, we could obviate the waste of physical flash
memory storage space by filling up the empty space in each 4KB
sub-page with all zeros. Intra-SSD compression could seamlessly
compress away the all-zero segments. It is worth noting that al-
though both DRAM-tier and SSD-tier B+ trees adopt a similar hash-
based leaf-page construction, they serve for completely different
purposes: The former is for enabling decompression early termi-
nation to accelerate cache hits, while the latter is for mitigating
the SSD cache read/write amplification problem by decoupling the
read/write units from the B+ tree leaf pages.

Page-based DRAM-to-SSD eviction. Write amplification has a
strong negative impact on SSDs in terms of both performance and
lifetime. This and next techniques aim to reduce the write ampli-
fication caused by DRAM-to-SSD cache objects eviction. Because
of intra-SSD transparent compression, we can calculate the overall
write amplification as follows:

Let 𝑉𝑜𝑏 𝑗 denote the total data volume of all the cache objects be-
ing evicted from DRAM to SSD, 𝑉ℎ𝑜𝑠𝑡 denote the total amount
of data written by host to SSD through the I/O interface (e.g.,
NVMe), and 𝑉𝑁𝐴𝑁𝐷 denote the total amount of data written into
the NAND flash memory. We define (i) host-side write amplifica-
tion𝑊𝐴ℎ𝑜𝑠𝑡 = 𝑉ℎ𝑜𝑠𝑡 /𝑉𝑜𝑏 𝑗 ≥ 1 to represent the write amplifica-
tion induced by host-side software; (ii) intra-SSD write reduction
𝑊𝑅𝑁𝐴𝑁𝐷 = 𝑉ℎ𝑜𝑠𝑡 /𝑉𝑁𝐴𝑁𝐷 ≥ 1 to quantify the effect of intra-SSD
compression. Hence, we can express the overall write amplification
𝑊𝐴 =𝑊𝐴ℎ𝑜𝑠𝑡 /𝑊𝑅𝑁𝐴𝑁𝐷 . To reduce the damage on NAND flash

. . .

Per-4KB Compression

[Object!, Object", …, Object#]

Hash function 𝑔

4KB sub-page Q1 4KB sub-page Q2 4KB sub-page Qm

Leaf Page (pre-comp.)

NAND Flash (post-comp.)

. . .
SSD

.

LBA

Figure 6: Illustration of hash-based mapping between cache
objects and 4KB sub-pages in a leaf page of 𝐵𝑇𝑆𝑆𝐷 , which
decouples the the SSD read/write amplification from B+ tree
leaf page size.

memory, we must reduce the host-side write amplification𝑊𝐴ℎ𝑜𝑠𝑡

and/or increase the intra-SSD write reduction𝑊𝑅𝑁𝐴𝑁𝐷 .
Because both DRAM and SSD cache tiers use B+ tree index,

we propose to apply page-oriented DRAM-to-SSD cache objects
eviction to reduce the host-side write amplification𝑊𝐴ℎ𝑜𝑠𝑡 . We
choose the classical second-chance eviction policy for the purpose
of implementation simplicity. Since B+ trees sort all the DRAM/SSD-
resident cache objects based on their keys, the key range of a DRAM
cache B+ tree leaf page may overlap with only one or few SSD cache
B+ tree leaf pages. Unlike evicting small key-value items from ran-
dom locations in cache, by evicting cold cache data in the unit of
leaf pages, it only incurs the read-modify-write operations over
a small number of SSD LBAs, leading to a small host-side write
amplification𝑊𝐴ℎ𝑜𝑠𝑡 . Moreover, thanks to the abundant spatial
locality in real-world workloads, such page-based eviction is highly
efficient, compared to object-based eviction as in CacheLib [19]. As
demonstrated in prior work [47] and our experiments in Section 4,
object-based eviction suffers from very high SSD write amplifica-
tion.

Sub-page under-filling. The objective of this technique is to
reduce the SSDwrite reduction𝑊𝑅𝑁𝐴𝑁𝐷 by increasing the content
compressibility of each 4KB SSD LBA block. As discussed above,
within one SSD cache B+ tree super-leaf page, each cache object is
hashed into one of multiple 4KB sub-pages, where each sub-page
associates with one 4KB SSD LBA. Let 𝛽𝑓 𝑖𝑙𝑙 ≤ 1 denote the 4KB sub-
page fill-factor (i.e., the percentage of 4KB space that is occupied
by cache objects), and the rest 1 − 𝛽𝑓 𝑖𝑙𝑙 portion of the sub-page is
filled with all zeros. Evidently, the compression ratio of each 4KB
sub-page is inversely proportional to its fill-factor 𝛽𝑓 𝑖𝑙𝑙 . The lower
the sub-page fill-factor is, the more the sub-page can be compressed
inside the SSD. We set a threshold 𝑇 on the permissible sub-page
fill-factor. As we evict pages from DRAM to SSD, once the fill-factor
of any sub-page exceeds 𝑇 , the entire page is split to ensure none
of sub-pages have a fill-factor larger than the specified threshold.
By setting 𝑇 well below 1 (e.g., 0.75), we can improve the sub-page
compression ratio and hence increase the intra-SSD write reduction.
Meanwhile, 𝑇 cannot be too small due to the B+ tree page split
overhead.

ZipCache: A DRAM/SSD Cache with Built-in Transparent Compression MEMSYS ’24, September 30-October 3, 2024, Washington, VA, USA

3.4 Major Operations
ZipCache supports GET, SCAN, PUT, and DELETE requests. The
operation flows are summarized as follows:

To serve a GET request, we search all the three B+ trees in
the order of 𝐵𝑇𝐷𝑅𝐴𝑀 → 𝐵𝑇𝐿𝑂 → 𝐵𝑇𝑆𝑆𝐷 . Since both 𝐵𝑇𝐷𝑅𝐴𝑀

and 𝐵𝑇𝐿𝑂 entirely reside in host DRAM, we search the SSD cache
tier B+ tree 𝐵𝑇𝑆𝑆𝐷 in the last to ensure SSD is accessed no more
than once when serving a GET request. If a GET request hits the
SSD cache tier, the obtained tiny/medium-size cache object will
be inserted into the DRAM cache tier. To serve a SCAN request,
we must carry out range scans over all the three B+ trees and
accordingly merge the results together as the output.

To serve a PUT request, if the cache object is a tiny/medium-size
object, we insert it into the DRAM cache tier, and meanwhile search
the large-size object index B+ tree 𝐵𝑇𝐿𝑂 for possible cache object
deletion, ensuring that any existing large-size object with the same
key is removed. If the cache object is a large-size object, we write it
to SSD in the 4KB-aligned manner and insert its pointer into 𝐵𝑇𝐿𝑂 ,
and meanwhile insert a tombstone object with the same key into
the DRAM cache tier to perform possible cache object deletion. We
note that a tombstone inserted into the DRAM cache tier will not
disappear until it reaches the SSD cache tier. To serve a DELETE
request, we insert one tombstone object into the DRAM cache tier,
and search 𝐵𝑇𝐿𝑂 for possible cache object deletion.

Besides normal B+ tree management operations such as page
split, ZipCache carries out two additional major background oper-
ations: (1) Leaf page re-compression in DRAM cache B+ tree: As
DRAM cache B+ tree uses per-page write buffering to amortize
the leaf page re-compression cost, once the size of one per-page
write buffer reaches the pre-specified threshold, ZipCache performs
background decompression-modify-compression over the leaf page
to merge the buffered objects into the compressed leaf page. (2)
DRAM-to-SSD page eviction: ZipCache keeps track of the hotness
of each DRAM cache B+ tree leaf page. When the DRAM cache tier
runs out of memory space, ZipCache evicts cold DRAM-resident
leaf pages into the SSD cache tier. All the in-memory medium-size
objects associated with to-be-evicted pages are first decompressed
and then moved to the SSD cache tier together with other tiny-size
objects.

4 Evaluation
We have implemented the ZipCache prototype in C++ and carried
out experiments on a server with two Intel Xeon Gold 6134 CPUs,
384GB DRAM, and one 3.84TB ScaleFlux CSD 3000 drive with built-
in transparent compression. The system OS is Ubuntu Linux release
22.04. Being fully compliant with the NVMe protocol, the CSD 3000
drive realizes hardware-based zlib (de)compression on each 4KB
LBA data block along the I/O path. It can achieve a compression
ratio similar to that of the software zlib library at the level 6, and its
(de)compression latency is sub-5𝜇𝑠 , at least one order of magnitude
shorter than TLC/QLC NAND flash memory read/write latency.
Meta’s Cachebench [19] is used to generate realistic cache object
access workloads with the configurable access locality. By config-
uring the percentage of cache objects that collectively serve 80%
cache access requests in Cachebench, we carried out experiments
based on four different categories of workload locality as listed in

Table 2, where 80%→20% means that 80% cache access requests hit
20% of all the cache objects. In the case of zero locality, we config-
ure Cachebench to randomly generate requests over all the cache
objects, representing the worst-case scenario.

Table 2: Four categories of workload locality.

Strong Moderate Weak Zero
80%→8% 80%→20% 80%→64% Random

To study the impact of cache object content compressibility,
we modified Cachebench to generate the cache object content as
follows. Given a parameter𝜂 ∈ [0%, 100%), we fill 1−𝜂 of each cache
object with incompressible random content and set the remaining 𝜂
portion as all zeros. Hence, the cache object content compressibility
improves as 𝜂 increases. The same method has been used by the
popular I/O test tool FIO (flexible I/O tester) [5] to generate I/O
data with configurable compressibility.

4.1 Overall Cache Performance
We first evaluate and compare the speed performance of Cache-
Lib [8], Kangaroo [47] (a variant of CacheLib for reducing SSDwrite
amplification), xcache [3], and ZipCache. To cover a wide range
of spectrum, we considered the scenarios when the total active
working set size is either larger or smaller than the DRAM/SSD
cache capacity. For both scenarios, we set the key size as 16B and
cache object size as 64B. The cache object content is generated
with the compressibility parameter 𝜂 = 50%. The workload consists
of 16 user threads issuing GET and PUT requests at the ratio of
1:1. Since adaptive compression bypassing is effective only under
workloads with very strong locality, we disable this feature here an
will study its effect later in Section 4.4. The parameters of CacheLib
and xcache are set as their default values, and we turned on the
LZ4 compression of xcache’s SSD cache tier. For ZipCache, the leaf
page size of DRAM tier B+ tree and SSD tier B+ tree is set to 4KB
and 64KB, respectively, and the DRAM tier per-page write buffer
size limit is set to 256B.

Fig. 7 shows the throughput and overall cache hit ratio when
the active working set is much larger than the DRAM/SSD cache
capacity. We fixed the total active working set size 𝐶𝑊𝑆 as 6TB.
Let 𝐶𝐷𝑅𝐴𝑀 and 𝐶𝑆𝑆𝐷 denote the DRAM and SSD cache tier ca-
pacity, we considered four different settings of {𝐶𝐷𝑅𝐴𝑀 , 𝐶𝑆𝑆𝐷 }:
{64GB, 0.5TB}, {64GB, 1TB}, {128GB, 0.5TB}, and {128GB, 1TB}. In
case of the SSD cache tier miss due to the larger-than-cache active
working set, we configured the backend data access latency as 1ms.
Since xcache/ZipCache both apply compression over the SSD cache
tier, they have similar overall cache hit ratio that is higher than
CacheLib. As a result, xcache and ZipCache have higher through-
put than CacheLib and Kangaroo, as shown in Fig. 7. Meanwhile,
since ZipCache applies compression over its DRAM cache tier, it
has a higher DRAM cache tier hit ratio (hence higher through-
put) than xcache. For instance, under moderate workload locality
with {𝐶𝐷𝑅𝐴𝑀 , 𝐶𝑆𝑆𝐷 } of {128GB, 1TB}, the overall cache hit ratio of
ZipCache is 69.7%, 2.6 percentage points (p.p.), 29.2 p.p. and 30.9
p.p. higher than xcache, CacheLib, and Kangaroo. The throughput
of ZipCache is about 6.1%, 75.0% and 76.1% than that of xcache,

MEMSYS ’24, September 30-October 3, 2024, Washington, VA, USA Rui Xie, Linsen Ma, Alex Zhong, Feng Chen, and Tong Zhang

0

50

100

150

0%
20%
40%
60%
80%

100%

Th
to

ug
hp

ut
 (K

O
ps

/s
)

O
ve

ra
ll

hi
t r

at
io

ZipCache throughput xcache throughput CacheLib throughput Kangaroo throughput
ZipCache hit ratio xcache hit ratio CacheLib hit ratio Kangaroo hit ratio

64𝐺𝐵
0.5𝑇𝐵

64𝐺𝐵
1𝑇𝐵

128𝐺𝐵
0.5𝑇𝐵

128𝐺𝐵
1𝑇𝐵0

20
40
60
80
100
120

0%
20%
40%
60%
80%

100%

Th
to

ug
hp

ut
 (K

O
ps

/s
)

O
ve

ra
ll

hi
t r

at
io

64𝐺𝐵
0.5𝑇𝐵

64𝐺𝐵
1𝑇𝐵

128𝐺𝐵
0.5𝑇𝐵

128𝐺𝐵
1𝑇𝐵

0
10
20
30
40
50
60
70

0%

20%

40%

60%

80%

Th
ro

ug
hp

ut
 (K

O
ps

/s
)

O
ve

ra
ll

hi
t r

at
io

64𝐺𝐵
0.5𝑇𝐵

64𝐺𝐵
1𝑇𝐵

128𝐺𝐵
0.5𝑇𝐵

128𝐺𝐵
1𝑇𝐵

0
10
20
30
40
50

0%

20%

40%

60%

Th
ro

ug
hp

ut
 (K

O
ps

/s
)

O
ve

ra
ll

hi
t r

at
io

64𝐺𝐵
0.5𝑇𝐵

64𝐺𝐵
1𝑇𝐵

128𝐺𝐵
0.5𝑇𝐵

128𝐺𝐵
1𝑇𝐵

0

10

20

30

40

0%

20%

40%

60%

Th
ro

ug
hp

ut
 (K

O
ps

/s
)

O
ve

ra
ll

hi
t r

at
io

64𝐺𝐵
0.5𝑇𝐵

64𝐺𝐵
1𝑇𝐵

128𝐺𝐵
0.5𝑇𝐵

128𝐺𝐵
1𝑇𝐵

(a) Strong locality (b) Moderate locality (c) Weak locality (d) Zero locality

Figure 7: Comparison of throughput and overall DRAM/SSD cache hit ratio when the active working set is much larger than
the DRAM/SSD cache capacity. We fixed the total active working set size 𝐶𝑊𝑆 as 6TB and, under each category of workload
locality, considered four different settings of {𝐶𝐷𝑅𝐴𝑀 , 𝐶𝑆𝑆𝐷 }: {64GB, 0.5TB}, {64GB, 1TB}, {128GB, 0.5TB}, and {128GB, 1TB}.

0
200
400
600

0%
20%
40%
60%
80%

100%
120%

1:16 1:8 1:4 1:2

Th
ro

ug
hp

ut

(K
O

ps
/s

)

D
R

AM
 ti

er
 h

it
ra

tio

ZipCache throughput xcache throughput CacheLib throughput Kangaroo throughput
ZipCache hit ratio xcache hit rate CacheLib hit ratio Kangaroo hit ratio

0

100

200

300

400

500

0%

20%

40%

60%

80%

100%

1:16 1:8 1:4 1:2

Th
ro

ug
hp

ut
 (K

O
ps

/s
)

D
R

AM
 ti

er
 h

it
ra

tio

0

100

200

300

400

500

0%

20%

40%

60%

80%

100%

1:16 1:8 1:4 1:2

Th
ro

ug
hp

ut
 (K

O
ps

/s
)

D
R

AM
 ti

er
 h

it
ra

tio

0

100

200

300

400

500

0%

20%

40%

60%

80%

100%

1:16 1:8 1:4 1:2

Th
ro

ug
hp

ut
 (K

O
ps

/s
)

D
R

AM
 ti

er
 h

it
ra

tio

0

100

200

300

400

500

0%

20%

40%

60%

80%

100%

1:16 1:8 1:4 1:2

Th
ro

ug
hp

ut
 (K

O
ps

/s
)

D
R

AM
 ti

ie
r h

it
ra

tio

𝐶!"#$: 𝐶%& 𝐶!"#$: 𝐶%& 𝐶!"#$: 𝐶%&𝐶!"#$: 𝐶%&
(a) Strong locality (b) Moderate locality (c) Weak locality (d) Zero locality

Figure 8: Comparison of throughput and DRAM cache hit ratio when the active working set fits into the DRAM/SSD cache (hence
the SSD cache tier hit ratio is 100%). We fixed the DRAM cache tier capacity 𝐶𝐷𝑅𝐴𝑀 as 64GB and considered 𝐶𝐷𝑅𝐴𝑀 : 𝐶𝑊𝑆 ratio
of 1:16, 1:8, 1:4, and 1:2.

CacheLib and Kangaroo, respectively. As shown in Fig. 7, as the
workload locality weakens, the performance difference among the
three caches becomes smaller since the backend access latency
becomes more dominant.

Fig. 8 shows the throughput and DRAM cache tier hit ratio
when the active working set fits completely in the DRAM/SSD
cache (hence the SSD cache tier hit ratio is 100%). We fixed the
DRAM cache tier capacity 𝐶𝐷𝑅𝐴𝑀 as 64GB and considered the
𝐶𝐷𝑅𝐴𝑀 : 𝐶𝑊𝑆 ratio of 1:16, 1:8, 1:4, and 1:2. Because of the build-in
block compression over its DRAM cache tier, ZipCache consis-
tently achieves higher DRAM tier hit rate and higher throughput
than CacheLib, Kangaroo and xcache, with throughput improve-
ments of up to 72.4%. Compared with xcache, CacheLib achieves
slightly higher DRAM cache hit ratio and hence throughput than
xcache. Under high workload locality (e.g., strong/moderate local-
ity), the advantage of ZipCahe over CacheLib/Kangaroo/xcache
gradually diminish as the DRAM capacity increases. For exam-
ple, under workloads with strong locality, when a small cache ca-
pacity (𝐶𝐷𝑅𝐴𝑀 : 𝐶𝑊𝑆 of 1:16), ZipCache achieves about 36.3 p.p.
higher DRAM tier hit rate and 30.4% higher throughput than Cache-
Lib/Kangaroo/xcache; when 𝐶𝐷𝑅𝐴𝑀 : 𝐶𝑊𝑆 increases to 1:2, their
DRAM hit rate and throughput become almost the same. This is
because, under high workload locality, increasing the DRAM capac-
ity alone (without data compression) can be sufficient to quickly
raise the DRAM tier hit rate over 90%. In comparison, under rela-
tively low workload locality (e.g., weak/zero locality), increasing

the DRAM capacity alone is much less effective on improving the
DRAM tier hit ratio. As a result, the value of data compression
becomes more evident. For example, with zero locality, ZipCache
achieves a DRAM hit rate that is 6.4 to 49.2 p.p. higher than Cache-
Lib, when 𝐶𝐷𝑅𝐴𝑀 : 𝐶𝑊𝑆 increases from 1:16 to 1:2.

4.2 DRAM Cache Tier Compression
Fig. 9 further shows the GET latency when active working set fits
in DRAM/SSD cache, where we measured the 50-percentile (p50)
latency, 90-percentile (p90 latency), and 99-percentile (p99) latency.
Compared to CacheLib, Kangaroo, and xcache, ZipCache consis-
tently achieves shorter latency due to its higher DRAM cache tier
hit ratio, with latency reductions of up to 42.4%. Moreover, the
latency reduces as the DRAM cache tier capacity increases, e.g.,
the p90 latency of ZipCache reduces from 28.9𝜇s to 5.2𝜇s when
𝐶𝐷𝑅𝐴𝑀 : 𝐶𝑊𝑆 increases from 1:16 to 1:2. All the three have simi-
lar p99 latency since it is largely determined by the SSD tier read
latency.

In addition to workloads with GET:PUT ratio of 1:1, we fur-
ther compared the performance under PUT-only and GET-only
Cachebench workloads with moderate locality. As shown in Fig. 10,
under 𝐶𝐷𝑅𝐴𝑀 : 𝐶𝑊𝑆 of 1:16 and PUT-only workload, ZipCache
achieves 78.1% and 145.7% higher throughput thanCacheLib/Kangaroo

ZipCache: A DRAM/SSD Cache with Built-in Transparent Compression MEMSYS ’24, September 30-October 3, 2024, Washington, VA, USA

0

20

1:16 1:8 1:4 1:2

La
te

nc
y

(μ
s)

CacheLib Kangaroo xcache ZipCache

0

5

10

15

1:16 1:8 1:4 1:2

La
te

nc
y

(μ
s)

0

20

40

60

1:16 1:8 1:4 1:2
La

te
nc

y
(μ

s)p50 p90

𝐶!"#$: 𝐶%&

0

200

400

1:16 1:8 1:4 1:2

La
te

nc
y

(μ
s) p99

𝐶!"#$: 𝐶%& 𝐶!"#$: 𝐶%&

Figure 9: GET latency under workloads with moderate local-
ity and different 𝐶𝐷𝑅𝐴𝑀 : 𝐶𝑊𝑆 .

and xcache, because its DRAM tier compression could help reduc-
ing the SSD tier write amplification due to DRAM-to-SSD evic-
tion. Under 𝐶𝐷𝑅𝐴𝑀 : 𝐶𝑊𝑆 of 1:16 and GET-only workload, Zip-
Cache achieves 56.3% and 71.6% higher throughput than Cache-
Lib/Kangaroo and xcache, because its DRAM tier compression helps
to increase the DRAM tier hit ratio. The performance difference
gradually shrinks as the DRAM cache tier capacity increases.

0 200 400 600 800

1:16
1:8
1:4
1:2

Throughput (KOps/s)

𝐶 !
"#

$
:𝐶

%
&

GET-only

0 50 100 150 200

1:16
1:8
1:4
1:2

Throughput (KOps/s)

ZipCache Kangaroo CacheLib xcache

𝐶 !
"#

$
:𝐶

%
&

PUT-only

Figure 10: Average throughput of PUT-only and GET-only
workload with moderate locality and different𝐶𝐷𝑅𝐴𝑀 : 𝐶𝑊𝑆 .

The above results well demonstrate the effectiveness of incorpo-
rating in-memory data compression to improve the cache speed per-
formance. This essentially attributes to the substantially increased
DRAM cache tier hit ratio enabled by in-memory compression and
the significant data access latency gap between DRAM and SSD.

4.3 SSD Cache Tier Write Amplification
We further compared the SSD cache tier write amplification among
ZipCache, CacheLib [8], Kangaroo [47], and xcache [3]. As dis-
cussed above in Section 3.3, once we deploy a hybrid-DRAM/SSD
cache on SSDs with built-in compression, we can express the over-
all SSD write amplification as𝑊𝐴 = 𝑊𝐴ℎ𝑜𝑠𝑡/𝑊𝑅𝑁𝐴𝑁𝐷 , where
the host-side write amplification𝑊𝐴ℎ𝑜𝑠𝑡 ≥ 1 represents the write
amplification induced by host-side cache software and intra-SSD
write reduction𝑊𝑅𝑁𝐴𝑁𝐷 ≥ 1 quantifies the effect of intra-SSD
compression (i.e., compression ratio achieved by SSD).

Fig. 11(a) shows the host-side write amplification𝑊𝐴ℎ𝑜𝑠𝑡 under
the Cachebench workload with moderate locality. The key size is
16B and cache object size is 32B, 64B, and 128B. By directly hashing
each cache object into one SSD 4KB LBA, CacheLib experiences
very high𝑊𝐴ℎ𝑜𝑠𝑡 that is inversely proportional to the cache object

0
20
40
60
80

100

32 64 128

H
os

t-W
A

Cache object size (Bytes)

CacheLib xcache
Kangaroo, δ=5% Kangaroo, δ=10%
ZipCache, P=64KB ZipCache, P=16KB
ZipCache, P=4KB

(a) Host-side write amplification

0 1 2 3 4

80%

90%

100%

Intra-SSD write reduction

Pe
r-4

KB
 fi

ll-
fa

ct
or

 β CacheLib
Kangaroo
ZipCache

(b) Intra-SSD write reduction

Figure 11: (a) Host-side write amplification𝑊𝐴ℎ𝑜𝑠𝑡 compari-
son among CacheLib, Kangaroo and ZipCache under differ-
ent cache object size, and (b) intra-SSD write reduction under
different per-4KB fill-factor (xcache is not included since its
intra-SSD write reduction remains as 1).

size. For example, its𝑊𝐴ℎ𝑜𝑠𝑡 increases from 31.5 to 60.7 when the
cache object size reduces from 128B to 64B. Regarding xcache, its
DRAM cache uses hash index and SSD cache uses LSM-tree index.
Hence, xcache has lower SSD write amplification than CacheLib. By
complementing CacheLib with aWAL to accumulate multiple cache
objects hashed to the same SSD 4KB LBA, Kangaroo [47] reduces
𝑊𝐴ℎ𝑜𝑠𝑡 at the cost of SSD storage capacity. Let 𝛿 < 1 denote the
ratio of WAL size and SSD cache size, we considered two values of
𝛿 : 5% and 10%. Fig. 11(a) shows the effectiveness of WAL-assisted
write amplification and the trade-off between the WAL-induced
storage overhead 𝛿 and host-side write amplification𝑊𝐴ℎ𝑜𝑠𝑡 . For
ZipCache, we considered three leaf page size of SSD tier B+ tree
𝐵𝑇𝑆𝑆𝐷 , including 4KB, 16KB, and 64KB. As discussed above, to
minimize SSD tier cache hit time, 𝐵𝑇𝑆𝑆𝐷 keeps all its non-leaf
pages in DRAM and leaves leaf pages on SSD. We define the 𝐵𝑇𝑆𝑆𝐷
memory overhead (denoted as 𝜁) as the ratio between the total size
of its in-memory non-leaf pages and total size of its on-SSD leaf
pages. The 𝐵𝑇𝑆𝑆𝐷 leaf page size affects the trade-off between host-
side write amplification𝑊𝐴ℎ𝑜𝑠𝑡 and 𝐵𝑇𝑆𝑆𝐷 memory overhead 𝜁 ,
which can be observed from Fig. 11(a) and Table 3. The results show
that, dependent upon their different configurations, Kangaroo and
ZipCache have comparable host-side write amplification, which
is slightly better than xcache and significantly better than that of
CacheLib, especially under small cache object size.

Table 3: 𝐵𝑇𝑆𝑆𝐷 memory overhead 𝜁 .

Leaf page size 64KB 16KB 4KB
Memory overhead 𝜁 0.6% 2.1% 7.5%

MEMSYS ’24, September 30-October 3, 2024, Washington, VA, USA Rui Xie, Linsen Ma, Alex Zhong, Feng Chen, and Tong Zhang

Fig. 11(b) shows themeasured intra-SSDwrite reduction𝑊𝑅𝑁𝐴𝑁𝐷

when running CacheLib, Kangaroo, and ZipCache on SSDwith built-
in transparent compression. Since xcache’s LSM-tree-based SSD
cache tier applies block compression, it does not benefit from intra-
SSD transparent compression and hence always has the intra-SSD
write reduction of 1. We generate the content of each cache object
with the compressibility parameter𝜂 = 50%. As discussed above, the
per-4KB under-filling technique can be equally applied to CacheLib
and Kangaroo. Hence, we measured the intra-SSD write reduction
of all three caches under different per-4KB fill-factor 𝛽𝑓 𝑖𝑙𝑙 including
100%, 90%, and 80%. Since Kangaroo and CacheLib employ the same
hash-based SSD tier cache structure, they have the same intra-SSD
write reduction𝑊𝑅𝑁𝐴𝑁𝐷 . As discussed above in Section 2.2, by
sorting all the cache objects based on their keys, B+ tree leaf pages
have a higher compressibility due to the stronger content corre-
lation across adjacent keys. Hence, ZipCache can achieve larger
intra-SSD write reduction. For example, under the fill-factor of 80%,
CacheLib/Kangaroo have the𝑊𝑅𝑁𝐴𝑁𝐷 of 2.49 while ZipCache has
𝑊𝑅𝑁𝐴𝑁𝐷 of 3.13.

By combining the above results of host-side write amplification
and intra-SSD write reduction, we can observe that, in addition to
its higher DRAM tier hit ratio and hence higher speed performance,
ZipCache achieves significantly lower SSD write amplification com-
pared to CacheLib and xcache, with reductions of up to 26.2×. For
example, with the object size of 64B and per-4KB fill-factor of 90%,
the overall SSD write amplification of ZipCache (leaf page size of
16KB) is 1.8, which is only 3.7% and 9.8% of CacheLib and xcache,
respectively. Even compared with Kangaroo, the CacheLib variant
that is solely optimized for reducing the SSD write amplification,
ZipCache has comparable or lower SSD write amplification. For
example, with the object size of 64B and per-4KB fill-factor of 90%,
the overall SSD write amplification of ZipCache (leaf page size of
16KB) is 53.5% of Kangaroo (with storage space overhead 𝛿 of 10%).

4.4 Adaptive Compression Bypassing
For workloads with strong localities, we could noticeably improve
the cache performance by adaptively bypassing the compression
over very hot leaf pages of the DRAM-tier cache’s B+ tree 𝐵𝑇𝐷𝑅𝐴𝑀 .
In this section we will study the effect of such adaptive compression
bypassing. Fig. 12 shows the CDF (cumulative distribution function)
of the measured GET latency and average throughput under the
Cachebench workload with strong locality. We configure a write-
intensive and a read-intensive workload with the GET:PUT ratio
set to 30%:70% and 70%:30%, respectively. The results show that the
proposed adaptive compression bypassing can significantly improve
the throughput and reduce the perceived latency. For example, by
turning on adaptive compression bypassing, we could reduce the p50
GET latency by 63% for thewrite-intensiveworkload and 76% for the
read-intensive workload, correspondingly improving the average
throughput by 44% and 59%, respectively. The results clearly show
the benefits of obviating CPU-intensive (de)compression operations
over hot B+ tree leaf pages in the DRAM cache tier.

In above experiments, the workload hot region remains stationary
and hence has been fully captured by ZipCache. We further carry
out experiments to study the responsiveness of compression bypass-
ing to runtime workload variations. Using the same Cachebench

0

20

40

60

80

100

0 2 4 6 8 10C
um

ul
at

iv
e

D
is

tri
bu

tio
n

(%
)

Latency (Microseconds)

On Off

50

1.81 2.61

90

5.39 6.30 5593.21
5238.96

0

50

100

0 2 4 6 8 10

C
D

F
(%

)

Latency (μs)

0

50

100

0 2 4 6 8 10

C
D

F
(%

)

Latency (μs)

0 500 1000 1500

Off
On
Off
On

30
%

70
%

Throughput (KOps/s)
G

ET
 %

(a) Latency comparison

(b) Throughput comparison

30% GET

70% GET

p50 reduction: 63%

p90 reduction: 54%

p50 reduction: 76%

p90 reduction: 66%

Figure 12: (a)GET latency and (b) average throughput compar-
ison under Cachebench workload with strong locality, where
GET:PUT ratio is 30%:70% or 70%:30%.

workload with strong locality, we arbitrarily shift the position of
the hot region to cover a non-overlapping set of in-memory cache
objects. Fig. 13 shows the measured average GET latency before
and after this sudden hot region shift. In the figure, we can see that
the average GET latency rapidly increases from 1.6𝜇s to 3.4𝜇s due
to the working-set change. As compression bypassing responds to
the workload change by re-compressing the pages of the previous
working set and decompressing the pages of the new hot region,
the average latency gradually returns back to 1.6𝜇s after serving
about 500K operations. Given the average throughput of over 400K
operations per second under strong locality (as shown above in
Fig. 8), we can estimate the transition period of no more than few
seconds.

0
1
2
3
4

0 100 200 300 400 500

La
te

nc
y

(μ
s)

Operation numbers (KOps)

Figure 13: Change of the average GET latency after the sud-
den hot region position shift.

ZipCache: A DRAM/SSD Cache with Built-in Transparent Compression MEMSYS ’24, September 30-October 3, 2024, Washington, VA, USA

4.5 Sensitivity Study
Compressibility. ZipCache has several configurable parameters.
In the above experiments, we fixed the cache object compressibil-
ity parameter 𝜂 as 50%. Fig. 14 shows the measured DRAM cache
tier hit ratio and throughput under different settings of 𝜂. We use
the Cachebench workload with moderate locality and set the key
size to 16B and cache object size to 64B. The results show the ef-
fect of data content’s compressibility on the cache performance.
With the DRAM cache capacity vs. active working set size ratio
𝐶𝐷𝑅𝐴𝑀 : 𝐶𝑊𝑆 of 1:16, as the compressibility increases from incom-
pressible (𝜂 = 100%) to highly compressible (𝜂 = 30%), the DRAM
tier cache hit ratio increases from 26.4% to 73.6%. The results clearly
show the impact of data compressibility on the performance of
ZipCache.

0%

20%

40%

60%

80%

100%

1:16 1:8 1:4 1:2

D
R

AM
 h

it
ra

te

η=30%
η=50%
η=70%
η=100%

𝐶!"#$: 𝐶%&

0 100 200 300 400 500

 1/16

 1/8

 1/4

 1/2

Throughput (KOps/s)

η=100% η=70% η=50% η=30%

𝐶 !
"#

$
/𝐶

'(
'

(a) DRAM tier hit ratio (b) Throughput

Figure 14: (a) DRAM tier cache hit ratio and (b) overall
throughput under different compressibility parameter 𝜂.

0%

1%

2%

3%

0
200
400
600
800

1000

0 128 256 384 512 M
em

or
y

ov
er

he
ad

Th
ro

ug
hp

ut
 (K

O
ps

/s
)

Buffer size (Bytes)

Throughput Buffer memory overhead

Figure 15: Throughput and memory usage overhead un-
der different per-page write buffer size, where PUT-only
Cachebench workload with strong locality is used.

Write Buffer Size. The per-page write buffer size could also
noticeably impact the DRAM tier cache performance under write-
intensive workloads. As we reduce the per-page write buffer size
to save DRAM space usage, the DRAM-tier cache’s B+ tree would
experience more frequent page re-compression, leading to degraded
performance. Fig. 15 shows the ZipCache throughput and DRAM
usage overhead under different per-page write buffer sizes using the
PUT-only Cachebench workload with strong locality. The overhead
of DRAM usage is defined as the ratio between the aggregated
per-page write buffer size and total DRAM tier cache capacity. The
results clearly show the trade-off between the cache performance

and the overhead of DRAM usage. As we increase the per-page
write buffer size from 0 to 256B, the cache performance improves
by 2.9× at the cost of 1% DRAM usage overhead.

Cache Object Size. Given the same total cache capacity, as
cache object size decreases, the number of cache objects increases,
leading to more cache index implementation complexity and more
significant compression-induced overhead. Hence, to most heavily
stress the cache, the experiments above focus on workloads with
only tiny-size cache objects. To show the effect of cache object size,
we have performed experiments with Cachebench workloads that
contain tiny-size (64B), medium-size (256B), and large-size (2KB)
cache objects. We ensure that the three categories of cache objects
consume the same amount of cache capacity. Fig. 16 shows the
GET latency for the three different sizes of cache objects. Requests
over medium-size objects experienced longer latency than that
over tiny-sized objects. For instance, under 𝐶𝐷𝑅𝐴𝑀 : 𝐶𝑊𝑆 of 1:16,
the p50 latency for medium-size objects is 26% more than that
for tiny objects. This increased latency is due to the extra step
of decompressing these medium-size objects. Large-size objects,
stored on SSDs, have significantly higher GET latency compared to
both tiny and medium-size objects.

0
200
400
600
800
1000

0
100
200
300
400
500

 1/16 1/8 1/4 1/2

La
rg

e-
si

ze
 la

te
nc

y
(μ

s)

Ti
ny

/m
ed

iu
m

-s
iz

e
la

te
nc

y
(μ

s)

Tiny-size Medium-size Large-size

𝐶!"#$/𝐶%&% 0
50
100
150
200
250
300
350
400

0

10

20

30

40

50

 1/16 1/8 1/4 La
rg

e-
si

ze
 la

te
nc

y
(μ

s)

𝐶!"#$/𝐶'(

P90

Ti
ny

/m
ed

iu
m

-s
iz

e
la

te
nc

y
(μ

s)

0
20
40
60
80
100
120
140
160

0
2
4
6
8

10
12

 1/16 1/8 1/4 La
rg

e-
si

ze
 la

te
nc

y
(μ

s)

𝐶!"#$/𝐶'(

P50

Ti
ny

/m
ed

iu
m

-s
iz

e
la

te
nc

y
(μ

s)

Figure 16: GET latency for various sizes objects under the
Cachebench workload withmodest locality.

5 Related Work
Key-Value Stores: The design and implementation of in-memory
and SSD-based key-value stores have been extensively studied by
the research community. Most in-memory KV stores chose to em-
ploy hash-based index (e.g., Memcached [1], Redis [6], MemC3 [32],
MICA [44],Mega-KV [61], RAMCloud [50], FASTER [21], HotRing [23]).
Only few implementations, such as MassTree [45], use tree-based
index. SSD-based key-value stores typically employ tree-based in-
dex and support block data compression. Because of its low write
amplification, log-structuredmerge (LSM) tree [51] index data struc-
ture has received most recent attentions in research community for
building SSD-based key-value stores [7, 17, 22, 27, 36, 54].

Prior work also studied the design of hybrid key-value stores
over different memory technologies (e.g., DRAM and SSD), aim-
ing to strike a better balance between the speed and cost. Cache-
Lib [19] and xcache [3] are two representative hybrid-DRAM/SSD
key-value stores, where CacheLib uses hash-based index for both
the DRAM and SSD tiers and xcache uses hash-based index for
DRAM tier and LSM-tree index for SSD tier. Motivated by inten-
sive research on NVM (non-volatile memory) technologies over

MEMSYS ’24, September 30-October 3, 2024, Washington, VA, USA Rui Xie, Linsen Ma, Alex Zhong, Feng Chen, and Tong Zhang

the past decade, recent work has developed NVM-enhanced hybrid
key-value stores [28, 30, 59, 60]. Though there is prior research
on flash cache compression [35, 42, 43, 56], little work studied the
potential of improving cache performance via in memory block
data compression.
Memory Compression: The computer architecture research com-
munity has widely studied the implementation of hardware-based
mainmemory compression [25, 31, 52, 62]). Aiming at better serving
general-purpose computing systems, hardware-based main mem-
ory compression focuses on fine-grained per-cacheline (e.g., 64B)
compression. The Linux kernel feature Zswap [13] compresses to-
be-swapped 4KB pages and keeps them in DRAM, which has been
used by Google [39] and Meta [57] to increase effective DRAM ca-
pacity. Contemporary data analytics systems like SAP HANA [33],
Oracle [40], and Snowflake [26] apply block compression to their
in-memory column-stores to reduce their memory consumption.
In-memory time series databases [14, 53] also widely use compres-
sion to exploit the inherently high compressibility of time series
data.
Computational SSD: Computational storage has attracted signifi-
cant recent interest [18, 20, 38, 55], and commercial products are
emerging on the commercial market (e.g., Samsung’s SmartSSD [10]
and ScaleFlux’s CSD [11]). Recent research [24, 37, 63] has stud-
ied how database management systems could take advantage of
computational SSDs with built-in transparent compression.

6 Conclusion
This paper presents a hybrid cache design called ZipCache, which in-
tegrates block data compression to improve the cache performance.
To maximize the block compression ratio and hence cache hit ratio,
in contrast to most existing in-memory cache design, ZipCache
employs the classic B+ tree indexes to manage both the DRAM and
SSD cache tiers. We developed several design techniques to reduce
compression-induced DRAM tier cache hit cost overhead. Built
upon emerging SSDs with transparent compression, ZipCache SSD
tier cache incorporates several design techniques to reduce the its
B+ tree index memory consumption and reduce the SSD write am-
plification, especially for workloads dominated by tiny-size cache
objects. Extensive experiments demonstrated its effectiveness and
studied the involved design trade-offs.

Acknowledgments
This workwas supported in part by the National Science Foundation
(NSF) under grants CNS-2006617, CCF-1910958, CCF-2210754, CCF-
2210755, CCF-2312508, and CCF-2312509.

References
[1] 2018. Memcached. https://memcached.org/
[2] 2018. Silesia Corpus. https://github.com/MiloszKrajewski/SilesiaCorpus.
[3] 2022. xcache. https://github.com/XimalayaCloud/xcache.
[4] 2023. Bitstamp Exchange Data. https://www.cryptodatadownload.com/data/

bitstamp/.
[5] 2023. Flexible I/O Tester. https://github.com/axboe/fio.
[6] 2023. Redis. https://redis.io
[7] 2023. RocksDB. https://rocksdb.org
[8] 2024. CacheLib. https://github.com/facebook/CacheLib
[9] 2024. Pika. https://github.com/OpenAtomFoundation/pika.
[10] 2024. Samsung SmartSSD. https://semiconductor.samsung.com/ssd/smart-ssd/
[11] 2024. ScaleFlux Computational Storage. http://scaleflux.com
[12] 2024. WiredTiger. https://github.com/wiredtiger/

[13] 2024. Zswp. https://wiki.archlinux.org/title/Zswap.
[14] Colin Adams, Luis Alonso, Benjamin Atkin, John Banning, Sumeer Bhola, Rick

Buskens, Ming Chen, Xi Chen, Yoo Chung, Qin Jia, et al. 2020. Monarch: Google’s
planet-scale in-memory time series database. Proceedings of the VLDB Endowment
13, 12 (2020), 3181–3194.

[15] Bryan Ao. 2023. NAND Flash Prices Expected to Stabilize and Rebound in Q4,
Projected to Remain Steady or Increase 0-5%, Says TrendForce. https://www.
trendforce.com/presscenter/news/20230911-11839.html.

[16] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload Analysis of a Large-scale Key-Value Store. In Proceedings of
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS). 53–64.

[17] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy Zwaenepoel, Huapeng
Yuan, Aashray Arora, Karan Gupta, and Pavan Konka. 2017. TRIAD: Creating
Synergies Between Memory, Disk and Log in Log Structured Key-Value Stores.
In Proceedings of USENIX Annual Technical Conference (ATC). 363–375.

[18] Antonio Barbalace and Jaeyoung Do. 2021. Computational Storage: Where Are
We Today?. In Proc. of Annual Conference on Innovative Data Systems Research
(CIDR).

[19] Ben Berg, Daniel Berger, Sara McAllister, Isaac Grosof, Sathya Gunasekar, Jimmy
Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, et al.
2020. The CacheLib caching engine: Design and experiences at scale. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI).

[20] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li, Wenjie Wu, Linqiang
Ouyang, Peng Wang, Yijing Wang, Ray Kuan, Zhenjun Liu, Feng Zhu, and Tong
Zhang. 2020. POLARDB meets computational storage: Efficiently support analyt-
ical workloads in cloud-native relational database. In USENIX Conference on File
and Storage Technologies (FAST). 29–41.

[21] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski,
James Hunter, and Mike Barnett. 2018. Faster: A concurrent key-value store with
in-place updates. In Proceedings of the International Conference on Management
of Data (SIGMOD). 275–290. https://doi.org/10.1145/3183713.3196898

[22] Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and Yinlong Xu. 2021. SpanDB:
A fast, cost-effective LSM-tree based KV store on hybrid storage. In USENIX
Conference on File and Storage Technologies (FAST). 17–32.

[23] Jiqiang Chen, Liang Chen, Sheng Wang, Guoyun Zhu, Yuanyuan Sun, Huan Liu,
and Feifei Li. 2020. HotRing: A Hotspot-Aware In-Memory Key-Value Store. In
USENIX Conference on File and Storage Technologies (FAST). 239–252.

[24] Xubin Chen, Ning Zheng, Shukun Xu, Yifan Qiao, Yang Liu, Jiangpeng Li, and
Tong Zhang. 2021. KallaxDB: A Table-less Hash-based Key-Value Store on
Storage Hardware with Built-in Transparent Compression. In Proceedings of the
International Workshop on Data Management on New Hardware (DaMoN). 1–10.

[25] Esha Choukse, Mattan Erez, and Alaa R Alameldeen. 2018. Compresso: Prag-
matic main memory compression. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 546–558.

[26] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
JianshengHuang, et al. 2016. The snowflake elastic data warehouse. In Proceedings
of the International Conference on Management of Data (SIGMOD). 215–226.

[27] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better space-time trade-offs for
LSM-tree based key-value stores via adaptive removal of superfluous merging.
In Proceedings of the International Conference on Management of Data (SIGMOD).
ACM, 505–520.

[28] Chen Ding, Ting Yao, Hong Jiang, Qiu Cui, Liu Tang, Yiwen Zhang, Jiguang Wan,
and Zhihu Tan. 2022. TriangleKV: Reducing write stalls and write amplification
in LSM-tree based KV stores with triangle container in NVM. IEEE Transactions
on Parallel and Distributed Systems 33, 12 (2022), 4339–4352.

[29] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. 2021. Rocksdb:
Evolution of development priorities in a key-value store serving large-scale
applications. ACM Transactions on Storage (TOS) 17, 4 (2021), 1–32.

[30] Zhuohui Duan, Jiabo Yao, Haikun Liu, Xiaofei Liao, Hai Jin, and Yu Zhang. 2023.
Revisiting Log-Structured Merging for KV Stores in Hybrid Memory Systems.
In ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS). 674–687.

[31] Magnus Ekman and Per Stenstrom. 2005. A robust main-memory compression
scheme. In 32nd International Symposium on Computer Architecture (ISCA). IEEE,
74–85.

[32] Bin Fan, David G Andersen, and Michael Kaminsky. 2013. MemC3: Compact and
Concurrent MemCache with Dumber Caching and Smarter Hashing. In USENIX
Symposium on Networked Systems Design and Implementation (NSDI). 371–384.

[33] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg,
and Wolfgang Lehner. 2012. SAP HANA database: data management for modern
business applications. ACM Sigmod Record 40, 4 (2012), 45–51.

[34] Goetz Graefe et al. 2011. Modern B-tree techniques. Foundations and Trends® in
Databases 3, 4 (2011), 203–402.

[35] Jingpeng Hao, Xubin Chen, Yifan Qiao, Yuyang Zhang, and Tong Zhang. [n. d.].
Implementing Flash-Cached Storage Systems Using Computational Storage Drive
with Built-in Transparent Compression. In 2021 IEEE International Conference on

https://memcached.org/
https://github.com/MiloszKrajewski/SilesiaCorpus
https://github.com/XimalayaCloud/xcache
https://www.cryptodatadownload.com/data/bitstamp/
https://www.cryptodatadownload.com/data/bitstamp/
https://github.com/axboe/fio
https://redis.io
https://rocksdb.org
https://github.com/facebook/CacheLib
https://github.com/OpenAtomFoundation/pika
https://semiconductor.samsung.com/ssd/smart-ssd/
http://scaleflux.com
https://github.com/wiredtiger/
https://wiki.archlinux.org/title/Zswap
https://www.trendforce.com/presscenter/news/20230911-11839.html
https://www.trendforce.com/presscenter/news/20230911-11839.html
https://doi.org/10.1145/3183713.3196898

ZipCache: A DRAM/SSD Cache with Built-in Transparent Compression MEMSYS ’24, September 30-October 3, 2024, Washington, VA, USA

Networking, Architecture and Storage (NAS). 1–8.
[36] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He, Tieying

Zhang, Feifei Li, Sheng Wang, Wei Cao, and Qiang Li. 2019. X-Engine: An
optimized storage engine for large-scale E-commerce transaction processing. In
Proceedings of the International Conference on Management of Data (SIGMOD).
ACM, 651–665.

[37] Kecheng Huang, Zhaoyan Shen, Zili Shao, Tong Zhang, and Feng Chen. 2023.
Breathing New Life into an Old Tree: Resolving Logging Dilemma of B+-tree on
Modern Computational Storage Drives. Proceedings of the VLDB Endowment 17,
2 (2023), 134–147.

[38] Dongup Kwon, Dongryeong Kim, Junehyuk Boo, Wonsik Lee, and Jangwoo
Kim. 2021. A fast and flexible hardware-based virtualization mechanism for
computational storage devices. In USENIX Annual Technical Conference (ATC).
729–743.

[39] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw
Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,
et al. 2019. Software-defined far memory in warehouse-scale computers. In Pro-
ceedings of the International Conference on Architectural Support for Programming
Languages and Operating Systems. 317–330.

[40] Tirthankar Lahiri, Shasank Chavan, Maria Colgan, Dinesh Das, Amit Ganesh,
Mike Gleeson, Sanket Hase, Allison Holloway, Jesse Kamp, Teck-Hua Lee, et al.
2015. Oracle database in-memory: A dual format in-memory database. In IEEE
International Conference on Data Engineering (ICDE). 1253–1258.

[41] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for new hardware platforms. In IEEE International Conference on Data
Engineering (ICDE). 302–313.

[42] Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim, Stephen Smaldone, and
Grant Wallace. [n. d.]. Nitro: A Capacity-Optimized SSD Cache for Primary
Storage. In 2014 USENIX Annual Technical Conference (USENIX ATC). 501–512.

[43] Wenji Li, Gregory Jean-Baptise, Juan Riveros, Giri Narasimhan, Tony Zhang, and
Ming Zhao. 2016. CacheDedup: In-line Deduplication for Flash Caching. In 14th
USENIX Conference on File and Storage Technologies (FAST). 301–314.

[44] Hyeontaek Lim, Dongsu Han, David G Andersen, and Michael Kaminsky. 2014.
MICA: A Holistic Approach to Fast In-Memory Key-Value Storage. In USENIX
Symposium on Networked Systems Design and Implementation (NSDI). 429–444.

[45] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness
for fast multicore key-value storage. In Proceedings of the european conference on
Computer Systems. 183–196.

[46] HasanAlMaruf, HaoWang, AbhishekDhanotia, JohannesWeiner, Niket Agarwal,
Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia,
and Prakash Chauhan. 2023. TPP: Transparent Page Placement for CXL-Enabled
Tiered-Memory. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3 (ASPLOS).
https://doi.org/10.1145/3582016.3582063

[47] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias, Juncheng Yang, Sathya
Gunasekar, Jimmy Lu, Daniel S Berger, Nathan Beckmann, and Gregory R Ganger.
2021. Kangaroo: Caching billions of tiny objects on flash. In Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP). 243–262.

[48] Timothy Prickett Morgan. 2020. CXL and Gen-Z Iron Out A Coherent Interconnect
Strategy. https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-
coherent-interconnect-strategy/.

[49] Jan Olšan. 2023. The days of SSDs getting cheaper are over. Prices are starting to
rise. https://www.hwcooling.net/en/the-days-of-ssds-getting-cheaper-are-over-
prices-will-rise/.

[50] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee,
Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum,
et al. 2015. The RAMCloud storage system. ACM Transactions on Computer
Systems (TOCS) 33, 3 (2015), 1–55.

[51] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33 (1996), 351–385.

[52] Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur Mutlu,
Phillip B Gibbons, Michael A Kozuch, and Todd C Mowry. 2013. Linearly com-
pressed pages: A low-complexity, low-latency main memory compression frame-
work. In Proceedings of the Annual IEEE/ACM International Symposium on Mi-
croarchitecture. 172–184.

[53] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A fast, scalable, in-memory
time series database. Proceedings of the VLDB Endowment 8, 12 (2015), 1816–1827.

[54] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. 2017.
PebblesDB: Building Key-Value Stores Using Fragmented Log-Structured Merge
Trees. In Proceedings of the Symposium on Operating Systems Principles (SOSP).
497–514.

[55] Tobias Vinçon, Christian Knödler, Leonardo Solis-Vasquez, Arthur Bernhardt,
Sajjad Tamimi, Lukas Weber, Florian Stock, Andreas Koch, and Ilia Petrov. 2022.
Near-data processing in database systems on native computational storage under
HTAP workloads. Proceedings of the VLDB Endowment 15, 10 (2022), 1991–2004.

[56] Qiuping Wang, Jinhong Li, Wen Xia, Erik Kruus, Biplob Debnath, and Patrick PC
Lee. [n. d.]. Austere Flash Caching with Deduplication and Compression. In 2020

USENIX Annual Technical Conference (USENIX ATC). 713–726.
[57] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao Wang, Blaise

Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain, Chunqiang Tang, et al.
2022. Tmo: transparent memory offloading in datacenters. In Proceedings of the
International Conference on Architectural Support for Programming Languages and
Operating Systems. 609–621.

[58] Monica J. White. 2023. The era of cheap SSDs is about to end. https://www.
digitaltrends.com/computing/samsung-flash-nand-chips-price-increase/.

[59] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu Tang, Hong Jiang, Chang-
sheng Xie, and Xubin He. 2020. MatrixKV: Reducing Write Stalls and Write
Amplification in LSM-tree Based KV Stores with Matrix Container in NVM. In
USENIX Annual Technical Conference (ATC). 17–31.

[60] Ling Zhan, Kai Lu, Zhilong Cheng, and JiguangWan. 2020. RangeKV: An efficient
key-value store based on hybrid DRAM-NVM-SSD storage structure. IEEE Access
8 (2020), 154518–154529.

[61] Kai Zhang, Kaibo Wang, Yuan Yuan, Lei Guo, Rubao Lee, and Xiaodong Zhang.
2015. Mega-kv: A case for gpus to maximize the throughput of in-memory
key-value stores. Proceedings of the VLDB Endowment 8, 11 (2015), 1226–1237.

[62] Jishen Zhao, Sheng Li, Jichuan Chang, John L Byrne, Laura L Ramirez, Kevin
Lim, Yuan Xie, and Paolo Faraboschi. 2015. Buri: Scaling big-memory computing
with hardware-based memory expansion. ACM Transactions on Architecture and
Code Optimization (TACO) 12, 3 (2015), 1–24.

[63] Ning Zheng, Xubin Chen, Jiangpeng Li, Qi Wu, Yang Liu, Yong Peng, Fei Sun,
Hao Zhong, and Tong Zhang. 2020. Re-think Data Management Software Design
Upon the Arrival of Storage Hardware with Built-in Transparent Compression.
In USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage).

[64] Jacob Ziv and Abraham Lempel. 1977. A universal algorithm for sequential
data compression. IEEE Transactions on information theory 23, 3 (1977), 337–343.
https://doi.org/10.1109/TIT.1977.1055714

[65] Jacob Ziv and Abraham Lempel. 1978. Compression of individual sequences
via variable-rate coding. IEEE transactions on Information Theory 24, 5 (1978),
530–536. https://doi.org/10.1109/TIT.1978.1055934

https://doi.org/10.1145/3582016.3582063
https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/
https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/
https://www.hwcooling.net/en/the-days-of-ssds-getting-cheaper-are-over-prices-will-rise/
https://www.hwcooling.net/en/the-days-of-ssds-getting-cheaper-are-over-prices-will-rise/
https://www.digitaltrends.com/computing/samsung-flash-nand-chips-price-increase/
https://www.digitaltrends.com/computing/samsung-flash-nand-chips-price-increase/
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1978.1055934

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Data Compression
	2.2 Cache Index Data Structure
	2.3 In-Storage Transparent Compression

	3 Design
	3.1 Architecture Overview
	3.2 DRAM Cache Tier
	3.3 SSD Cache Tier
	3.4 Major Operations

	4 Evaluation
	4.1 Overall Cache Performance
	4.2 DRAM Cache Tier Compression
	4.3 SSD Cache Tier Write Amplification
	4.4 Adaptive Compression Bypassing
	4.5 Sensitivity Study

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

